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Abstract

This paper compares results of three different methods to determine the in-plane elastic properties of sheet materials. Results obtained with

standard resonant beam and tensile tests are used to assess a mixed numerical–experimental technique developed to determine the in-plane

elastic properties of orthotropic plates from the resonance frequencies of rectangular plate samples (the so-called ‘Resonalyser’ technique).

Test materials were selected on the basis of an expected low degree of elastic anisotropy in order to put the accuracy and sensitivity of the

different techniques to assess anisotropic materials to a test. Therefore, aluminium alloy and stainless steel samples were prepared from hot-

rolled plates, deliberately avoiding pronounced cold-rolling textures. The differences between the results obtained with the three

experimental approaches are critically evaluated.

In the case of very thin plates, the existing mixed numerical–experimental Resonalyser procedure succeeded in accurately identifying the

elastic material properties. A slightly adapted procedure is proposed to extend the applicability of the Resonalyser procedure to thicker plates.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering materials behave in an anisotropic

manner: their response to external solicitations depends on the

loading direction. A simple but common form of anisotropy is

orthotropy. The general stress–strain relation for materials

having orthotropic symmetry properties is given by Eq. (1)
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In this expression, {1i} and {gi} represent the normal and

shear strain components respectively, {sj} and {tj} the

normal and shear stress components, Ei the Young’s modulus

in the i-direction, nij and Gij are the Poisson’s ratio and the

shear modulus in the ði; jÞ-plane. When the assumption of the

Kirchhoff plate theory [1] are respected, the material is in a

state of plane stress:s3 ¼ t23 ¼ t13 ¼ 0: In this situation, the

three-dimensional stress–strain relation of Eq. (1) is reduced

to a two-dimensional relation. The elastic behaviour of

orthotropic materials like rolled metal sheets or long-fibre

reinforced composites can thus be described by the following

reduced stress–strain relation:
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If linear material behaviour is assumed, the elastic properties

Ei; nij and G12 are also called the ‘engineering constants’.
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Due to the symmetry of the compliance matrix in Eq. (2), only

four (instead of five) independent engineering constants

occur: e.g. E1; E2; n12 and G12:

Knowledge of the elastic properties of materials is

important for their use in structural applications, as well as

for the improvement of the processes used to transform the

materials into components. Elastic properties also play a

major role in the vibration behaviour of constructions. This

observation can be inverted, leading to the conclusion that

the vibration behaviour of samples of a particular material

can be used to determine the material’s elastic properties.

Analytical formulas have been developed to calculate

elastic moduli from the resonance frequencies of a beam-

shaped test sample. European and American standard test

procedures (ENV-843-2 and ASTM E 1876, respectively)

propose, e.g. the following equation to calculate the E-

modulus along the long axis of a beam-like sample from its

flexural frequency

E ¼ 0:946
mf 2

f

b

 !
l

h

� �3

Af

where E is Young’s modulus, ff is resonance frequency for

fundamental mode flexural vibration, b is width of test

piece, h is thickness of test piece, m is mass of test piece, and

Af is a shape factor.

This classical resonant beam test serves as an alternative

to static tests in which a controlled load (or deformation) is

applied while monitoring the resulting deformation (or

load). The method that is most easy to interpret is tensile

testing, which is used to determine the E-modulus of a long

sample along its long axis from the slope of the uniaxial

stress–uniaxial strain curve, obtained according to, e.g.

ASTM E 111.

More recently, an inverse method, called ‘Resonalyser

procedure’, was developed to determine all four engineering

constants for orthotropic materials from the resonance

frequencies of rectangular plate samples [2]. In this paper,

standard tensile and resonant beam tests are used to validate

the accuracy and sensitivity of the Resonalyser procedure

for the case of rolled metal sheets.

2. Theoretical background to the Resonalyser procedure

2.1. The ‘Poisson’ test plate

The Resonalyser procedure is a mixed numerical-

experimental method that aims to identify the engineering

constants of orthotropic materials using measured resonance

frequencies of freely suspended rectangular plates. Using

rectangular plates as test specimen allows the simultaneous

identification of E1; E2; n12 and G12: In addition, the

obtained elastic material properties are homogenised over

the plate surface and hence suitable as input values for finite

element models of structures. Also the amount of machining

induced edge damage is reduced when using plate shaped

rather than elongated specimens.

The basic principle of the Resonalyser is to compare

experimentally measured frequencies with the numerically

computed frequencies of a finite element model of the test

plate. Such an inverse procedure can only yield good results

if the numerical model is controllable and if the elastic

properties can be observed through the measured data [3,4].

This requires that in the selected series of frequencies at

least one of the frequencies varies significantly for

variations of each of the elastic properties. It can be

shown that this requirement is fulfilled if the length to width

ratio of the test plate approximately complies with

Length

Width
¼ 4

ffiffiffiffiffi
E1

E2

s
:

A plate with such a ratio is called a Poisson test plate [5].

This name has been chosen based on the observation that the

frequencies of the anticlastic and synclastic modes (Fig. 1)

are particularly sensitive for changes of the Poisson’s ratio

of the plate material. A (hypothetical) material with a zero

Fig. 1. The first five mode shapes of a Poisson test plate. The anticlastic mode is also called the ‘saddle’ mode. ‘Breathing’ of ‘diaphragm’ mode is commonly

used equivalent terms for the synclastic mode.
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value for Poisson’s ratio would make the frequencies of both

modes coincide.

Fig. 1 gives an overview of the five first mode shapes of a

Poisson test plate. The mode shapes of the first three

resonances (the torsional, anticlastic and synclastic modes)

will always appear in this fixed sequence. The order of the

fourth and fifth mode, an orthogonal couple of torsion-

bending mode shapes, cannot be predicted a priori, and will

have to be determined during the experiment.

2.2. Experimental modal analysis

To measure the five resonance frequencies, the test

plate is suspended with thin wires in order to approximate

the free–free boundary conditions of the FE-model as

good as possible. The plate is excited by an impulse (a

subtle hammer impact) and the vibrations are measured

with a laservibrometer, which is connected with a

standard PC equipped with a data acquisition card. This

output only concept (the impulse force is not recorded)

was chosen because the set-up can be easily used in a

furnace, allowing use of the Resonalyser procedure to

evaluate the temperature dependence of the material

properties.

Traditionally, modal parameters are estimated from

output only measurement data by means of the ‘Peak

Picking’ method, which identifies the resonance frequen-

cies from the position of the peaks in the output

spectrum. Unfortunately, this simple approach does not

allow the identification of closely spaced modes, and is

therefore unable to separate the frequencies of the fourth

and fifth mode of a Poisson plate. To identify these two

torsion-bending modes, the Covariance-driven stochastic

subspace identification method (SSI-Cov) was success-

fully used. Fig. 2 presents the stabilisation diagram of an

aluminium plate as obtained with SSI-Cov. The overlay

plot concentrates on the fourth and fifth mode, and the

single peak in the spectrum shows that it is impossible to

identify these two closely spaced modes by peak-picking.

The two vertical lines of stable poles illustrate that the

SSI-Cov method manages in separating the two torsion-

bending modes. A full description of the SSI-Cov

method can be found in Ref. [6].

2.3. Model updating: identification of the engineering

constants

A detailed scheme of the Resonalyser procedure is given

in Fig. 3. Starting with estimated initial values, the

engineering constants in a finite element model of the test

plate are iteratively updated until the first five computed

resonance frequencies match the measured frequencies. In

the finite element model, the plate dimensions and mass are

considered as known quantities and thus fixed values.

The four engineering constants are stored in the parameter

column {p}: The updating of {p} is realised by minimising a

cost function CðpÞ

CðpÞ ¼ {fexp 2 fFEMðpÞ}T½W ðf Þ�{fexp 2 fFEMðpÞ}

þ {pð0Þ 2 p}T½W ðpÞ�{pð0Þ 2 p} ð3Þ

in which CðpÞ is a RNP ! R cost function yielding a scalar

value, NP ¼ 4 is the number of material parameters: E1;

E2; n12 and G12; {pð0Þ} is a ðNP £ 1Þ vector and contains

the initial estimates for the material parameters, {fFEMðpÞ}

is a ðNF £ 1Þ output column containing the NF ¼ 5

computed frequencies using parameter values {p}; {fexp}

contains the ðNF £ 1Þ measured frequencies, ½W ðf Þ� is a

ðNF £ NFÞ weighting matrix applied on the difference

between the measured and the calculated frequency

column, ½W ðpÞ� is a ðNP £ NPÞ weighting matrix for

Fig. 2. The stabilisation diagram of an aluminium plate obtained with the SSI-Cov method. The used symbols are ‘%’ for a stable pole, ‘.v’ for a pole with

stable frequency and vector, ‘.d’ for a pole with stable frequency and damping, ‘.f’ for a pole with stable frequency and ‘.’ for a new pole, the solid line is the

trace of the spectrum matrix.
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the difference between the initial parameter column {pð0Þ}

and the parameter column {p}:

The cost function CðpÞ has a minimal value for the

optimal parameter values column {pðoptÞ}: The value of this

{pðoptÞ} can be made independent on the choice of the

weighting matrices ½W ðf Þ� and ½W ðpÞ� in the cost function.

The choice and role of ½W ðf Þ� and ½W ðpÞ� is discussed, among

others, in Refs. [1,3,7]. The updating of the initial parameter

column toward {pðoptÞ} by minimisation of the cost function

is given by the following recurrence formula in iteration

step ðj þ 1Þ :

{pðjþ1Þ} ¼ {pðjÞ} þ ½W ðpÞ þ SðjÞT W ðf ÞSðjÞ�21SðjÞW ðf Þ

� {fexp 2 fFEMðpðjÞÞ} ð4Þ

In Eq. (4) S is the sensitivity matrix containing the partial

derivatives of the numerical frequencies with respect to the

elements of the parameter column.

The numerical model of the test plate is based on the

Love–Kirchhoff theory [1]. The applicability of this theory

is mainly limited by the thickness of the plate. Traditionally,

plates with a length/thickness ratio that exceeds a factor of

50 are considered as sufficiently thin. The tested materials

and applied vibration amplitudes do not violate additional

assumptions made by the Love–Kirchhoff theory. Very

accurate eight order polynomial Lagrange functions are

taken as shape functions in the used numerical finite element

model of the test plate [8]. The stiffness matrix of the test

plate is evaluated in each iteration cycle using standard

finite element procedures with the values of the parameter

column {p} at that moment [9]. The computed resonance

frequencies are obtained by solving a generalised eigen-

value problem composed with the constant mass matrix and

the evaluated stiffness matrix [10]. The iteration procedure

ends if convergence of {p} is reached. The values of the

engineering constants in {p} after the last iteration cycle are

considered as the result of the Resonalyser procedure.

Fig. 3. Detailed flowchart of the Resonalyser procedure: material identification by comparing the experimentally measured and computed resonance

frequencies of a test plate.
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The whole identification procedure takes typically less than

5 s on a standard pentium-III PC.

3. Material identification

3.1. Test specimen selection and preparation

Commercially available 6082 Al-alloy and 304 stain-

less steel plates were obtained in the hot-rolled state. The

304 stainless steel is an austenitic steel produced by

Avesta AB. Main alloying elements are chromium

(18.5%) and Ni (8.5%). The plate used in this investi-

gation has a thickness of 6 mm. The 6082 aluminium

alloy contains as main alloying elements silicon

(0.7 – 1.3%), iron (0.5%), Mn (0.4 – 1.0%) and Mg

(0.6–1.2%). The plate used in this investigation has a

thickness of 5 mm.

Relatively large tensile (200 £ 20 mm2), resonant beam

(300 £ 24 mm2) and Resonalyser (300 £ 300 mm2) test

samples were produced from a single plate. Length and

width of the samples were carefully machined (to within

^0.03 mm) to eliminate or at least reduce the effect of

inaccurate sample dimensions on the calculated material

properties. The thickness of the samples was not changed:

the rolling surfaces were left untouched. The standard

deviation of the thickness was 0.013 mm. Resonant beam

and tensile test samples were cut along the rolling

direction and at the following angles: 290, 260, 245,

230, 0, 30, 45, 60 and 908. The plates for the

Resonalyser tests had sides parallel to and at 908 with

the rolling direction.

3.2. Standard mechanical tests

The elastic moduli were determined following standard

resonant beam and tensile test procedures. The resonant beam

method is based on the measurement of the fundamental

flexure and torsion resonance frequencies of slender beam

samples. Analytical equations, based on elastic beam theory,

relate these frequencies to the Young’s and shear modulus

while assuming isotropic material behaviour. Resonant beam

tests were performed on rectangular beam-like samples using

the RFDA apparatus (IMCE nv,Diepenbeek, Belgium) which

analyses the resonant vibration obtained with a mechanical or

acoustic impulse excitation [11,12], following the guidelines

provided by ASTM E 1876-99 and ENV-843-2.

Tensile tests were performed on flat dog-bone shaped

samples of length 200 mm, 65 mm gauge length and gauge

sections of 63 mm2 for the aluminium and 73 mm2 for the

steel samples. The strain was determined in a first instance

using a clip-on extensometer (gauge length 50 mm). After-

wards, tensile tests were repeated on the same samples, now

using bi-axial strain gauges. For each test, the load was

applied and removed periodically, with an increasing

amplitude (3, 6 and 9 kN for the aluminium samples, and

2, 4 and 6 kN for the steel samples).

4. Experimental results

4.1. Resonant beam tests

The Young’s modulus was calculated from the funda-

mental in plane bending frequency (IP-Bending). The shear

Fig. 4. Comparison of the results of the three different methods for the E-, G-modulus and Poisson’s ratio n for aluminium.
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modulus was calculated from the fundamental torsion

frequency of the beam. Figs. 4 and 5 show the obtained

material properties for different orientations of the test

beams.

4.2. Uniaxial tensile tests

The Poisson’s ratios were identified by means of bi-axial

strain gauges, while the measurement of the Young’s

moduli was performed with a clip-on extensometer. The

values of the elastic moduli were derived from the stress–

strain curve obtained during the loading phase of the test

cycle. The measured material properties are plotted in

Figs. 4 and 5.

4.3. Resonalyser tests

The material properties were obtained with the procedure

described in Section 2. Tables 1 and 2 compare the

measured resonance frequencies with the analytical fre-

quencies of the Resonalyser’s FE-model.

The Resonalyser identifies the material properties in the

direction of the main sample axes. The off-axis elastic

properties of an orthotropic material can be calculated with

the following equations [13]

1

Ex

¼
1

E1

cos4uþ
1

G12

2
2n12

E1

� �
sin2ucos2uþ

1

E2

sin4u

nxy¼Ex

n12

E1

ðsin4uþcos4uÞ2
1

E1

þ
1

E2
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G12
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1
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G12
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1

E2
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1

Gxy

¼2
2

E1

þ
2

E2

þ
4n12

E1

2
1

G12

� �
sin2ucos2u

þ
1

G12

ðsin4uþcos4uÞ
ð5Þ

in which u is the angle between the main direction and the

considered off-axis direction.

Fig. 5. Comparison of the results of the three different methods for the E-, G-modulus and Poisson’s ratio n for steel.

Table 1

The obtained frequency match for the aluminium plate

Freq. exp. (Hz) Freq. num. (Hz) Difference (%)

Mode 1 177.00 176.76 0.13

Mode 2 267.50 267.36 0.05

Mode 3 339.94 339.79 0.04

Mode 4 465.35 465.88 20.11

Mode 5 466.09 466.62 20.11

Table 2

The obtained frequency match for the steel plate

Freq. exp. (Hz) Freq. num. (Hz) Difference (%)

Mode 1 220.53 220.09 0.20

Mode 2 322.73 322.51 0.07

Mode 3 400.92 400.67 0.06

Mode 4 562.86 563.82 20.17

Mode 5 576.96 577.86 20.16
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4.4. Comparison of the results

As opposed to the Resonalyser results, the off-axis

properties identified with resonant beam and tensile tests

are directly measured on samples cut from the plate at an

angle u with the rolling direction. Figs. 4 and 5 compare

these results with the curves obtained with the formulas of

Eq. (5) and the Resonalyser procedure. The anisotropy of

the Al-material is clearly more pronounced (about 4%

difference between minimum and maximum Young’s

modulus) than that of the investigated stainless steel

(less than 2%).

5. Discussion

A comparison of the results of the Resonalyser technique

with the resonant beam (RB) test results leads to a number

of peculiar observations:

† similar results are found for the Young’s modulus in the

two main directions 08 and ^908;

† there is a difference between the Young’s moduli for the

off-axis directions: ERB . Eresonalyser;

† there is a difference between the values of the shear

modulus at 08: GRB . Gresonalyser;

† there is no agreement between the results for Poisson’s

ratio.

5.1. The influence of warping

The Kirchhoff theory assumes that a plane, perpendicular

to the central plane of the plate before deformation, remains

flat and perpendicular to the central plane after deformation.

The Kirchhoff thin plate theory does not account for

warping deformations caused by shear stresses induced by

torsion. For a given set of material properties, this leads to

an overestimation of the resonance frequency of all the

torsion modes. The Resonalyser procedure will compensate

this effect by artificially reducing the shear modulus. This is

exactly what is observed when comparing the resonant

beam and Resonalyser results at 08.

The problem could be overcome by using a more

complex FE-model, such as a 3D model, which does not

neglect warping. But the use of such a model requires a

number of additional material parameters: E3; G13; G23; n13

and n23 (1). Since all these parameters are unknown and

independent, they would have to be identified, and this

would drastically increase the complexity of the identifi-

cation procedure. Because the Kirchhoff model especially

overestimates the frequencies of the modes with a torsional

deformation, a more practical approach would be to identify

the in-plane elastic properties from a number of pure

bending frequencies only.

As already stated in Section 2.1, an inverse method can

only yield good results if the elastic properties can be

observed through the measured data [2,3]. The bending

modes of the used test plate, a plate of which the edges are

parallel with the main material directions, are very

insensitive to a variation of the shear modulus. The

identification of the shear modulus without using torsional

mode shapes thus requires a second test-plate, of which the

bending frequencies are highly shear modulus sensitive. A

good solution to ensure a maximal sensitivity with respect to

the shear modulus, is the use of a test plate of which the

diagonals are parallel with the two main directions. The

frequencies of the bending modes of such a plate will be

controlled by the 458 off-axis Young’s modulus, which is

very sensitive to a variation of the in-plane shear modulus.

An aluminium plate was prepared with edges at 458 to the

rolling direction. Table 3 shows the obtained frequency

match between the measured and the numerical frequencies

for the adapted Resonalyser procedure. The adapted

procedure is based on the same framework as the standard

procedure, but uses a different set of frequencies. Table 4

presents the modes that are used in the adapted procedure.

Fig. 6 shows that the adapted Resonalyser procedure

does not only remove the discrepancy between the

resonant beam and Resonalyser shear modulus, it also

solves the underestimation of the off-axis properties of

the Resonalyser.

For very thin plates, the mixed numerical-experimental

Resonalyser technique can identify the four elastic proper-

ties of an orthotropic material from the first five resonance

frequencies of a single test plate. When the thickness of

the plates increases, the application of the original

Resonalyser procedure will result in an underestimation of

the shear modulus, because the Kirchhoff plate theory,

which is used in the Resonalysers FE-model, cannot model

Table 3

The obtained frequency match for the aluminium plates

Freq. exp. (Hz) Freq. num. (Hz) Difference (%)

Mode 1 267.50 267.55 0.02

Mode 2 339.94 339.25 20.20

Mode 3 844.20 844.36 0.02

Mode 4 849.38 849.59 0.02

Mode 5 260.64 260.56 20.03

Mode 6 335.17 335.75 0.17

Table 4

The bending modes used in the adapted Resonalyser procedure

Mode type Plate Sensitive to

Mode 1 Saddle 0–908 n12

Mode 2 Breath 0–908 n12

Mode 3 Bending 2-Y 0–908 E2

Mode 4 Bending 2-X 0–908 E1

Mode 5 Saddle 245–458 G12

Mode 6 Breath 245–458 G12

T. Lauwagie et al. / NDT&E International 36 (2003) 487–495 493



the influence of warping. To identify the correct material

properties an adapted Resonalyser procedure that uses six

vibration frequencies of two test plates will have to be

applied. To identify the physically correct values of the

elastic material properties the adapted procedure is

preferred. However, when the material properties have to

be used as input data for 2D finite element models based on

the Kirchhoff theory, the original procedure is preferred,

since the obtained material properties will compensate the

similar shortcomings of the FE-model, and their use will

result in a better correlation between FE calculation and

experimental results.

5.2. Comparison of Poisson’s ratio

The comparison between the Poisson’s ratio obtained

with resonant beam and (adapted) Resonalyser reveals a

complete lack of agreement between the results of these two

methods. However, the tensile tests and the Resonalyser

procedure reveal the same directional dependency of

Poisson’s ratio. Fig. 7 shows a high similarity between the

directional dependency of the elastic and shear modulus

measured with resonant beam and tensile tests, and the

directional dependency calculated with Eq. (5) using the

four main material properties as identified with the adapted

Resonalyser procedure. However, when the curves are

calculated using the same values for E1; E2 and G12; but

taking the Poisson’s ratio as identified with resonant beam

tests, they completely fail to model the direction variation of

both elastic and shear modulus. It is clear that resonant beam

tests fail to identify Poisson’s ratio for orthotropic materials.

The reason for this is the fact that the resonant beam-

identification-procedure is based on a relation between

Poisson’s ratio and the elastic and shear modulus, which

only holds for fully isotropic materials.

5.3. Additional remarks

For the highly homogeneous materials that were used in

this investigation, a good repeatability was obtained for both

the Resonalyser and resonant beam tests. For materials with

less homogeneous elastic properties, like composite

materials, the Resonalyser results will be less sensitive to

local differences, since the technique identifies the average

stiffness of a large plate specimen. Therefore, good average

values of the elastic materials properties can be obtained

with less experiments than with resonant beam tests.

Obviously, the use of the Resonalyser technique is not

recommended when the homogeneity of the material has to

be investigated.

The repeatability of the results was much lower in the

case of tensile tests, than in the case of the resonant

vibration test methods (resonant beam and Resonalyser).

The uncertainty on the results obtained with tensile tests is

too large to validate the absolute values of the material

properties obtained with Resonalyser technique. However,

the results of the tensile tests do confirm the directional

dependency of the material properties as measured with the

Resonalyser, at least for the Al alloy. The elastic anisotropy

of the hot-rolled stainless steel is too small (about 1%) to be

more than detected with any of the test methods used.

The full potential of the Resonalyser technique has not

been used yet. The mixed numerical– experimental

techniques are, theoretically, capable of measuring any

property that can be used as an input parameter for a FE-

model. One of the possible applications of mixed

numerical–experimental techniques currently investigated,

Fig. 7. Comparison of Poisson’s ratio of the investigated Al, obtained with

the adapted Resonalyser procedure, tensile testing and calculated from

resonant beam tests.

Fig. 6. The squares and triangles represent the material properties measured with resonant beam and tensile tests, respectively, the curves show the results of the

adapted Resonalyser procedure.
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is the identification of the elastic properties of the

individual layers of a layered material.

6. Conclusions

1. In this paper three methods for measuring the elastic

properties of plate materials are shown to quantify the

degree of elastic anisotropy of aluminium and stainless

steel sheets. The results obtained with different tech-

niques (uniaxial tensile tests, resonant beam tests and

the Resonalyser procedure, a mixed-numerical–experi-

mental technique based on impulse excited resonant

vibrations of Plate) confirm each other.

2. Although both resonant beam and Resonalyser tests

deliver the same results for Young’s and shear modulus,

only the Resonalyser procedure is able to obtain correct

results for the Poisson’s ratio of orthotropic materials.

3. Both resonant beam and Resonalyser procedures manage

to accurately determine the directional dependence of in-

plane stiffness, even for a moderately anisotropic hot-

rolled Al alloy, for which minimum and maximum

stiffness are ,4% different.
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